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Abstract
A metal–insulator transition in a quasicrystalline icosahedral AlPdRe film series
was recently observed. The resistance of one of the films follows an activated
Mott variable-range hopping law, thus indicating insulating behaviour. The
magnetoresistance (MR) ratios r = R(B, T )/R(0, T ) of this insulating film
exhibited large positive values at low temperatures of 93 mK and magnetic
fields up to l7 T. The data are fitted using the wave function shrinkage
model for insulating films, and the fits to the data above 1 K are acceptable.
The low temperature MR data exhibit anomalous behaviour at high fields
above 12 T, characterized by a saturation of the ratio data and followed by
a turnover to smaller values. A possible explanation for the saturation of
the R(B, T )/R(0, T ) ratio is proposed involving a field dependence of the
localization length and of the density of states, which both appear in the
wave function shrinkage theory. In contrast, the weak localization theory and
electron–electron interaction theory, used to describe electronic transport in
metallic films, failed badly to describe the transport data of this insulating film.

1. Introduction

The most anomalous property of quasicrystals (QCs) is their very high resistivity values
observed in the liquid helium region [1]. The physical origin for the highly resistive behaviour
is currently not well understood for a system composed only of metals. This behaviour has
challenged experimentalists to determine whether a metal–insulator transition (MIT) exists
in some of the QC systems. Ever since Tsai et al fabricated the icosohedral (i) i-AlPdRe
quasicrystals [2], much experimental effort has been spent on demonstrating the existence of
the MIT on this system through measurements of zero field resistance versus temperature and
through magnetoresistance (MR) measurements in the liquid helium temperature range. There
is yet no clear consensus amongst the experimentalists on the definite existence of the MIT in
the QC i-AlPdRe structure, as summarized in [3].
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2. Experimental background

There have been published a great number of good magnetoresistance (MR) data on
the quasicrystalline (QC) i-AlPdRe system [4–11]. However, in many publications, the
magnetoresistance data have been analysed using the weak localization (WL) theory together
with the electron–electron interaction (EEI) theory, which describe electronic transport in
metallic films. However, most of the films studied appear to be on the insulating side of
the metal–insulator transition where these theories are no longer valid. Often the reported
fitting parameters, appearing in these WL and EEI fits to the data, appear unphysical. For
example, values for the diffusion constantDdif were set to magnitudes considerably greater than
1 cm2 s−1, values that are characteristic of metallic films. Magnitudes for the electron screening
or interaction parameter Fσ exceeded the theoretical maximum value of 0.93. Moreover, Lin’s
group has recently observed experimentally that Fσ decreases from 0.31 to 0.01 as the spin
orbit scattering time τso is increased from 1.4 × 10−11 s to 4 × 10−12 s in disordered TiAlSn
alloys [12]. Thus, it is most unlikely that values for Fσ will exceed 0.3 in the strong spin–orbit
scattering material of the QC AlPdRe. Also large variations in the spin–orbit scattering time
τso, a fitting parameter appearing in the WL theory, have been reported between different QC
samples. It is hard to justify magnitude changes of the order of 103 in τso since the chemical
contents of the heavy nuclei elements (Pd and Re) determine the scattering strength, and these
two chemical components change only by a few atomic per cent when crossing the MIT. Thus,
we believe that the WL and EEI theories have been incorrectly applied to the majority of MR
data on the QC AlPdRe system.

We now summarize the experimental MR results on QCs [4–11]. A good review
paper of the experimental MR data is reference [11]. The published data are represented
either by plots of the ratio r = R(B, T )/R(0, T ) or �ρ/ρ = [ρ(B) − ρ(0)]/ρ(0) or
�σ = σ(B)− σ(0), leading to difficulties when trying to compare results between different
groups. However, there are some common features shared between all the published MR
data. Provided that the samples are sufficiently insulating, that is, samples having temperature
ratios R(4.2K)/R(300 K) > 10, then the MR ratio r = R(B, T )/R(0, T ) is always slightly
less than 1 (negative MR) in small fields. Only in intermediate to strong fields and at low
temperatures do the MR ratios become significantly larger than 1 (positive MR) and often
take on magnitudes as large as 2 to 5. If the sample is weakly insulating with the temperature
ratios R(4.2 K)/R(300 K) ranging only between 5 and 10, then the negative MR is extremely
small or absent and only the positive MR process dominates over the entire field range. For
example, Wang et al demonstrated that as the QC samples are made more insulating, then the
orbital magnetoconductance process (forward interference model) becomes more and more
dominating at low fields, resulting in R(B, T )/R(0, T ) ratios that are smaller than 1 [5, 6].
Refer to figure 3 in [5] of Wang et al for this beautiful result. The absence of the negative
MR contribution was also reported by Sarachik’s group in doped Si samples, a semiconductor
system [13]. However, the general behaviour of a negative MR at low fields and a positive
MR at high fields is also observed in highly insulating amorphous NixSi1−x films and in other
systems [14–19].

3. MR theories for insulating samples

This paper describes attempts to explain the MR data of insulating QC films using theories
valid for strongly insulating films. A simple phenomenological model of two hopping
processes acting simultaneously—the wave function shrinkage process and the orbital
magnetoconductance (forward interference) process—can nicely explain the MR ratio data
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observed in insulating amorphous NixSi1−x films [14]. We extend this same model to our QC
MR data taken on an insulating film exhibiting a Mott variable-range hopping (VRH) law in
its resistance behaviour.

We are not aware of a satisfactory 3D theory to explain the magnetoconductance (MC)
or magnetoresistance (MR) data of samples located just below the MIT. Our current position
on MR data taken on these weakly insulating samples is simply to present the data without
interpretation. Eventually, there will appear satisfactory theoretical descriptions to describe
such results.

3.1. The wave function shrinkage model for positive MR ratios

Up to moderately high temperatures, many highly insulating 3D samples exhibit resistances
that follow the Mott VRH law in zero magnetic field [20, 21]:

R(0, T ) = RMott,0 exp(TMott/T )
1/4 (1)

where RMott,0 is the prefactor. TMott is the characteristic Mott temperature that can be
determined from the zero field resistance data using the w = −d lnR/d ln T = y(TMott/T )

y

method of Zabrodskii and Zinov’eva [22]; this method also yields a value for the hopping
exponent y ≈ 1

4 . According to theory, TMott ≈ 18.1/(kBg0a
3
0) where g0 is the constant

Mott density of states (DOS) and a0 is the Bohr radius or localization length [23]. Note
that this localization length is expected to diverge to infinity as the MIT is approached from
below. Thus, TMott → 0 K just below the MIT. For the Mott model to be valid, the optimum
hopping distance ropt should be greater than the localization length a0 (or Bohr radius).
This implies that the measurement temperatures must satisfy the relation T < TMott since
ropt ≈ (3/8)a0(TMott/T )

1/4 [23].
Strong positive increases of the resistance with application of a magnetic field had been

predicted originally by Tokumoto et al [24], and by Shklovskii [25, 26] and elaborated by
Shklovskii and Efros [27] using the wave function shrinkage model. Numerical calculations
for predicting the R(B, T )/R(0, T ) ratios in small and modest magnetic fields for the case
of the Efros–Shklovskii (ES) VRH law had been made by Schoepe [28]. The application of a
magnetic field decreases the overlap probability between two sites, thus resulting in an increase
of the resistance with field.

We now summarize the positive MR ratio predictions of the wave function shrinkage
model for the case when the resistance exhibits a Mott VRH law.

(a) For very small magnetic fields, Shklovskii and Efros found this expression for the MR
ratio [27]:

R(B, T )/R(0, T ) ≈ exp[t1(e
2a4

0/h̄
2)(TMott/T )

3/4B2]. (2)

Here, t1 is predicted to be t1 ≈ 5/2016 = 0.002 48 anda0 is the Bohr radius, approximately
equal to the localization length. R(0, T ) is the resistance in zero field at temperature T ,
given by equation (1).

(b) For high fields, Shklovskii and Efros suggest this expression [27]:

R(B, T ) ≈ RMott,B exp[(ea2
0/6h̄)1/3(TMott/T )

1/3B1/3]. (3)

Here, RMott,B is the prefactor, different from the zero field prefactor.
(c) For the interval of intermediate and large fields, there are no analytical predictions for the

R(B, T )/R(0, T ) ratio. Here we strongly rely on a procedure described by Schoepe in
reference [28] where values for the percolation parameter (optimum hopping probability
parameter) in moderately strong fields are calculated for the Efros–Shklovskii (ES) VRH
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case. The difficult problem is to estimate the corresponding hopping volume Vξ around a
donor site, which gradually changes from an isotropic sphere at small fields to a double
paraboloid in large fields. Schoepe uses the volume expression suggested by Ioselevich
[29, 28]. Recently, numerical calculations have been summarized in tables also for the
Mott VRH case [30]. Values for the normalized percolation parameter ξc(B)/ξc(0) can be
read off from figure 1 of this paper as a function of the normalized magnetic field B/Bc

and inserted into equation (4) below to estimate values for R(B, T )/R(0, T ):

R(B, T )/R(0, T ) = exp{(TMott/T )
1/4[ξc(B)/ξc(0)− 1]} (4)

where R(0, T ), the resistance in zero field, is given by equation (1). ξc(0) is defined
as ξc(0) = (TMott/T )

1/4. There is one free fitting parameter, Bc(T )—the normalizing
characteristic field, that must be extracted from each set of MR ratio data points. But
since Bc(T ) has the temperature dependence [28]

Bc(T ) = 6h̄/[ea2
0ξc(0)] = (6h̄)/(ea2

0)(T /TMott)
1/4 (5)

Bc(T ) can also be estimated at all other temperature measurement points once it is
determined at one temperature. However, we have treated Bc as a free fitting parameter
and have determined its value at each fixed temperature where MR data were taken.

Figure 1. Normalized percolation parameter (the optimum hopping probability parameter)
ξc(B)/ξc(0) as a function of normalized magnetic fields B/Bc, where ξc(0) = (TMott/T )

1/4 and
Bc = (6h̄/ea2

0)(T /TMott)
1/4. Note the different dependences of the hopping probability upon

magnetic field, with a quadratic B2 dependence at very small fields and a small linear B region at
modest fields. Magnitudes for the resistance ratios r = R(B, T )/R(0, T ) upon magnetic field are
obtained by using equation (4) together with values from this figure.

In the limit of small fields, the numerical calculations yield a quadratic B2 dependence
for the r = R(B, T )/R(0, T ) ratio; and in the very high field limit, the ratio has the weak field
dependence going as ln(r) ∝ B1/3.

3.2. The orbital magnetoconductivity theory for negative MR ratios

Although our sample does not exhibit any negative MR and this orbital contribution is not
needed in our special case, we include this section for completeness for investigators who
might wish to analyse their data on more insulating samples.
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The orbital magnetoconductivity (MC) theory or forward interference theory predicts
small negative magnetoresistances. This model takes into account the forward interference
among random paths in the hopping process. Nguyen, Spivak and Shklovskii (NSS) [31, 32]
considered the effect of interference among the various paths associated with the hopping
between two sites spaced at a distance equal to the optimum hopping distance ropt. NSS
found that the interference between all possible paths within a cigar-shaped area of length
ropt and width (a0ropt)

1/2 will change the hopping probability between two sites. Averaging
numerically the logarithm of the conductivity over many random impurity realizations, they
obtained under most conditions a negative MR (positive MC) which is linear in magnetic field.

Sivan, Entin-Wohlman and Imry (SE-WI) expanded the NSS model by using a critical
percolating resistor method rather than the logarithmic averaging method [33]. Their calculated
MC is always positive for strong fields and is predicted to saturate at sufficiently large fields.
The field at which saturation starts to occur, Bsat, is given by this approximate formula:

Bsat ≈ 0.7(h/e)(8/3)3/2(1/a2
0)(T /TMott)

3/8. (6)

For this case, the saturation field Bsat ∝ T 3/8, and thus the MC saturates at smaller fields as
the temperature is lowered.

For small magnetic fields, the SE-WI model predicts a quadratic magnetic field dependence
of the MC; but the magnitudes are extremely small and difficult to observe experimentally in
most cases.

We approximate the orbital MC contribution by the following expression:

σ(B, T )/σ (0, T ) ≈ 1 + csat[B/Bsat(T )]/[1 + B/Bsat(T )]. (7)

Equation (7) saturates at high fields to a value of (1 + csat) and yields a linear dependence upon
B at intermediate fields. Here csat is a temperature independent fitting parameter. Inverting
equation (7), we obtain for the orbital contribution to R(B, T )/R(0, T ):

R(B, T )/R(0, T ) = 1/{1 + csat[B/Bsat(T )]/[1 + B/Bsat(T )]}. (8)

For the case of a small B/Bsat ratio and a small prefactor csat,

R(B, T )/R(0, T ) ≈ 1 − csatB/Bsat. (9)

3.3. Combining the wave function shrinkage theory with the orbital magnetoconductivity
theory

We now make the assumption that the resistive contributions from both the wave function
shrinkage theory and the orbital magnetoconductance theory can be added, based upon the
behaviour of our MR data. Many experimental groups have used this assumption, since
‘acceptable’ fits to the low field data can be obtained [15, 16]. A more rigorous theory is
certainly needed, which would probably consider a hopping probability that is composed of
these two processes acting simultaneously [34]. Thus, in our phenomenological empirical
model, the final expression for the magnetoresistance ratio R(B, T )/R(0, T ) takes this form:

R(B, T )/R(0, T ) ≈ exp{ξc(0)[ξc(B)/ξc(0)− 1]}
+1/{1 + csat[B/Bsat(T )]/[1 + B/Bsat(T )]} − 1 (10)

where csat, Bsat(T ) and Bc(T ) are three fitting parameters. The last term, −1, is needed to
assure that the ratio has the correct limit whenB = 0, namely thatR(B → 0, T )/R(0, T ) = 1.
Recall that Bsat(T ) ∝ T 3/8, Bc(T ) ∝ T 1/4, and csat should be independent of temperature.

We have recently observed that weakly insulating films do not exhibit this negative MR
contribution. These weakly insulating films generally have Mott characteristic temperatures
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smaller than 100 K or R(4.2 K)/R(300 K) temperature ratios less than 10. We speculate
on the absence of the negative MR in reference [35]. The film studied in this paper with
TMott = 3.425 K also does not exhibit ratios smaller than 1 (that is, no negative MR present);
hence csat = 0 and equation (10) reduces to the simple form of equation (4), where the wave
function shrinkage theory dominates at all fields.

4. The weak localization theory and electron–electron interaction theory for metallic
samples

The weak localization (WL) theory and the electron–electron interaction (EEI) theory have
been very successful in describing the low temperature magnetoconductance (MC) data
and zero field conductivity data of metallic films. Unfortunately, these theories have often
been applied incorrectly to insulating quasicrystalline films, resulting in unphysical fitting
parameters. When these theories are used to describe the electronic transport properties of
metallic quasicrystalline films, the resulting fitting parameters take on reasonable physical
values [36]. We will try to fit these two metallic theories to our transport data on the ‘insulating’
A2 film.

Electron–electron interactions (EEI) produce a dip in the density of states close to EF.
This dip results in a small correction to the zero field conductivity that reduces the conductivity
with decreasing temperatures. According to the 3D prediction of Altshuler and Aronov [37],
the particle–hole contribution arising from EEI to the zero field conductivity is

σEEI(T ) = 1.294√
2

e2

4π2h̄

(
4

3
− 3

2
F̃σ

)(
kBT

h̄Ddif

)1/2

(11)

where the electron screening or interaction parameter F̃σ ranges between 0.2 and 0.4 for many
thin metallic films. According to theory, the electron screening parameter cannot exceed the
value of 0.93 [38, 39]; this parameter has an extremely weak dependence upon the free carrier
concentration n going as F̃σ ∝ 1/(n)1/6. In addition, the diffusion constant Ddif is predicted
to vanish as the metal–insulator transition is approached from above [40]. The small diffusion
constant associated with a barely insulating film makes the prefactor of the T 1/2 term large,
and this causes problems when fitting to the conductivity of films located close to the MIT.
Also, a conversion factor of 1/100 must be used if the conductivity is expressed in units of
(" cm)−1.

Lee and Ramakrishnan have calculated the 3D magnetoconductivity (MC) contribution,
�σ = σ(B)− σ(0), arising from EEI in the particle-hole channel [39]:

�σEEI(B, T ) = −e2

4π2h̄
F̃σ

(
kBT

2h̄Ddif

)1/2

g3

(
geµBB

kBT

)
(12)

where ge is the Lande factor. Ousset et al have suggested suitable approximations for the
function g3(x) [41]. Note that the low field behaviour of �σEEI has a B2 dependence and the
high field behaviour goes as B1/2. It is useful to note that geµB/kB ≈ 4/3 in units of K/T if
ge = 2. The MC from the EEI process is always negative. Again the (Ddif)

−1/2 dependence
will cause problems for highly resistive films.

The weak localization (WL) theory generally applies to very metallic films, but it appears to
work successfully for barely metallic films too. Kawabata first derived the 3D WL correction
to the zero field conductivity for the case of no spin–orbit scattering [42]. Fukuyama and
Hoshino extended the Kawabata zero field results to include the spin–orbit scattering τso and
obtained a zero field correction to the conductivity [43]. Hickey et al have suggested the
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following zero field expression that includes magnetic spin scattering [44]:

σWL(T ) = e2

2π2h̄

1√
Ddif

[
3

(
1

4τin(T )
+

1

3τso
+

1

τs

)1/2

−
(

1

4τin(T )
+

1

4τs

)1/2
]

(13)

where τso is the temperature independent spin-orbit scattering time, τs is the temperature
independent magnetic spin scattering time and τin(T ) is the temperature dependent inelastic
scattering time. The characteristic fields are related to the scattering times through the
expression Bx = h̄/(4eDdifτx). A magnitude for the spin-orbit scattering time [45, 46]
can be estimated from the expression τso ≈ τo(l37/Z)4 where Z is the atomic number
(Z = 75 for Re and Z = 46 for Pd) and where τo ≈ 10−15 s is the elastic scattering
time. For our case of strong spin-orbit scattering and hence a small magnitude for τso,
equation (13) predicts weak anti-localization where σWL ∝ (−1/2)[τin(T )]−1/2; in this case,
the WL contribution produces an increase in the conductivity with decreasing temperatures,
in opposition to the EEI contribution. However, the EEI contribution of equation (11) seems
always to dominate, resulting in an overall major decrease of the zero field conductivity with
decreasing temperatures. For films located just above the MIT, τin(T ) takes on the simple
temperature dependence of τin(T ) = a/T 1 [47–49].

Thus, the zero field conductivity can be represented by this expression:

σ(T ) = σ0 + �σEEI(T ) + �σWL(T ) (14)

where �σEEI(T ) and �σWL(T ) each have a simple temperature power law dependence and σ0

is a positive offset constant.
For the 3D weak localization magnetoconductivity (MC) theory, Baxter et al extended

the results of Fukuyama and Hoshino to include weak magnetic scattering for the case where
τ−1

s � τ−1
so [50]; the Zeeman splitting correction at high fields has been neglected in this

expression [50]:

�σWL(B, T ) = e2

2πh̄2

√
eB

h̄

[
3

2
f3

(
B

Bin(T ) + 4
3Bso + 2

3Bs

)
− 1

2
f3

(
B

Bin(T ) + 2Bs

)]
. (15)

Baxter et al gave a numerically convenient approximation for the function f3(x), which is
accurate over the entire range of x, and retains the correct asymptotic limits [50].

Note that at low fields�σWL exhibits aB2 dependence, and at high fields aB1/2 dependence
since f3(x) saturates at 0.605.

5. Data analysis techniques

Films may be classified electronically as being either insulating or metallic. Insulating 3D films
exhibit infinite resistivities or zero conductivities at absolute zero in temperature. In contrast,
metallic 3D films always display finite resistivities or positive conductivities at absolute zero.
Note that films that exhibit decreasing conductivities with decreasing temperatures still can be
metallic.

Strongly insulating samples (perhaps also including insulating quasicrystal films) exhibit
an activated hopping conductivities which can be described by the variable-range hopping
(VRH) expression in zero magnetic field:

σ(T ) = σ0/[exp(T0/T )
y] (16)

where σ0 is the prefactor, T0 is a characteristic temperature and y is the hopping exponent.
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In contrast, the conductivity of a 3D metallic sample (most likely including metallic
quasicrystal films) at sufficiently low temperatures can be described by the power law
expression

σ(T ) = σ(0) + CT z (17)

where σ(0) is the positive zero temperature conductivity, C is the prefactor and z is the
exponent of the temperature power law. Equation (17) might approximate the conductivity
contribution from the 3D electron–electron interaction (EEI) theory and/or from the 3D weak
localization (WL) theory. Note that in the above procedures the exponents y and z are free
fitting parameters.

An useful and sensitive technique to identify the metal–insulator transition was previously
introduced [51, 52]. The mathematical function w(T ) exhibits distinctively different
temperature behaviours for insulating and metallic films:

w(T ) = d ln σ/d ln T = (T /σ) dσ/dT = −(T /R) dR/dT . (18)

For strongly insulating films exhibiting variable-range hopping conductivity, inserting
equation (16) into equation (18) yields

w(T ) = y(T0/T )
y; (19)

notice that w(T ) increases to infinity as the temperature approaches absolute zero. A least
regression fit through the log(w) versus log(T ) data will determine the hopping exponent y
and the characteristic temperature T0 that appears in the VRH law.

For 3D metallic films exhibiting slowly decreasing conductivities with decreasing
temperatures at low temperatures, equation (17) can be substituted into equation (18) to yield

w(T ) = zCT z/[σ(0) + CT z] = zCT z/σ (T ). (20)

Observe that if the film is indeed metallic and exhibits a finite positive conductivity σ(0)
at absolute zero, then w(T ) should extrapolate to zero as T → 0 K. Thus, if one fits MR data
using the WL and EEI theories, then the zero field conductivity data better exhibit w → 0
as the T → 0 K, indicating self-consistency between the zero field conductivity expressions
and the finite field MC expressions. Unfortunately, this important test has been ignored or
neglected in the quasicrystalline transport field.

For the special insulating case of the conductivity following a simple power law with
σ(0) = 0 in equation (17), that is

σ(T ) = CT z (21)

then equations (21) and (18) predict that thew are independent of temperature and thatw = z.

6. Comparison between experimental and numerical results

6.1. Analysis of a metallic quasicrystalline AlPdRe film

We have previously studied a metallic 2200 Å AlPdRe film, C5, having a temperature ratio
R(4.2 K)/R(300 K) of 2.9 [36]. Both the MC data and zero field conductivity data could
be nicely fitted using the WL and EEI theories summarized above. The fitting parameters
used were Ddif = 0.75 cm2 s−1, Fσ = 0.2, τso = 1.5 × 10−13 s, τin = 1.6 × 10−11/T 1.03 s
and σ0 = +18.7 (" cm)−1; these magnitudes are reasonable and physical. In addition, the
w = − d lnR/d ln T data extrapolated to zero as T → 0 K, suggesting that this film is metallic.
This film C5 has a geometric factor fg = 4.4 × 10−6 cm, needed to convert resistances to
resistivities. Refer to reference [36] for additional details.
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6.2. Analysis of an insulating quasicrystalline AlPdRe film.

We now compare the numerical calculations to MR ratio data taken on an insulating 2000 Å
quasicrystalline AlPdRe film A2. This film has an R(4.2 K)/R(300 K) ratio of 8.7 and a
geometric conversion factor fg = 2.9 × 10−6 cm. For details on film preparation, refer to
reference [3]. Values for the hopping exponent y = 0.244 and for the Mott characteristic
temperature TMott = 3.425 K were obtained using the method described by Zabrodskii
and Zinov’eva [22] by fitting a least regression fit of equation (19) through the w data
(w = − d lnR/d ln T ) as shown in figure 2. The zero field resistivity data and the Mott
VRH fit are shown in figure 3, and agreement is excellent below 1.5 K. Above 4 K, the
resistance no longer follows a Mott VRH law. However, we note that for the Mott VRH
model to be valid, the optimum hopping distance ropt(T ) must satisfy the criterion that
ropt(T )/a0 ≈ 0.375(TMott/T )

1/4 � 1. This criterion is barely satisfied in the 0.07 K
to 2 K temperature region of interest, owing to the small value of the Mott temperature,
TMott = 3.425 K.

Figure 2. The increasing behaviour of w = −d lnR/d ln T with decreasing temperatures strongly
suggests that the resistivity of this QC film A2 is characterized by a VRH law. A least regression
fit through the w data yields a hopping exponent of y ≈ 0.244 and a characteristic temperature
TMott ≈ 3.425 K.

In figure 4, the MR ratio data are compared between an insulating and a metallic QC film,
A2 and C5, at T ≈ 1.6 K. The difference in magnitudes between the two ratio sets is striking.
Note that the R(B, T )/R(0, T ) ratios in metallic films rarely exceed values greater than 1.05.

We first try to fit the WL and EEI theories, valid for metallic films, to the MC data at
T = 1.77 K of the ‘insulating’ QC film A2, using equations (12) and (15). We set Fσ = 0.25,
τso = 10−13 s, τin(T = 1.77 K) = 10−11 s and Ddif = 0.1 cm2 s−1. A value for Ddif

can also be estimated using the relation Ddif = 1/[e2ρDOS(EF)]. Using a specific heat
γ of 0.17 mJ mol−1 and the relation that DOS ≈ 0.422γ [1, 11], one estimates that the
DOS(EF) ≈ 3×1046 states J−1 m−3. To obtain this result, we have assumed that 1 mole = 56 g
for the Al70Pd21Re9 material and that its density is about 4.6 g cm−3. Using a room temperature
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Figure 3. Fit of the Mott VRH law, ρ(0, T ) = ρMott,0 exp(TMott/T )
0.244, to the low temperature

resistivity data of the quasicrystalline AlPdRe film A2 with TMott ≈ 3.425 K.

Figure 4. Comparison between the MR magnitudes of an insulating and a metallic quasicrystalline
AlPdRe film, A2 and C5, at similar temperatures. Notice the much larger magnitudes of the MR
ratios for the insulating film, A2.

resistance of 4000" or an equivalent resistivity of 0.000 116"m, the estimated value forDdif

is about 0.11 cm2 s−1.
The raw resistance data at T = 1.77 K was converted to conductivities and then values

for the MC, �σ = σ(B) − σ(0), were calculated. The first striking observation is the small
magnitudes for the MC data, resulting from the high film resistances of 48 700 " at 1.77 K, as
illustrated in figure 5. These small magnitudes are in conflict with the large predicted values
of the theories, arising mainly from the small magnitude of the diffusion constant that appears
inversely in the prefactors. In figure 5, the predicted fit from the EEI theory exceeds the MC
data values; an additional smaller contribution from the WL theory makes the final theoretical
predictions of the combined theories a factor of two greater than the measured values; this
poor agreement in figure 5 suggests that these metallic theories fail to explain the data.
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Figure 5. An attempt using the metallic quantum correction theories to fit the MC data of film
A2 at T = 1.77 K. Note that values of r = R(B, T )/R(0, T ) of film A2 from figure 4 have been
converted to MC values appearing in this figure, where�σ = σ(B)−σ(0). The weak localization
(WL) and electron–electron interaction (EEI) theories give unacceptable fits to the MC data of this
‘insulating’ film.

Figure 6. An attempt using the metallic quantum correction theories to fit the zero field conductivity
data. Note that values of the resistivity from figure 3 have been converted to conductivities
appearing in this figure. Not only is the predicted temperature dependence of the conductivity
unacceptable using the WL and EEI theories, but an unphysical negative conductivity offset
constant, σ0 = −210 (" cm)−1, had to be included. Thus, the WL and EEI theories fail badly to
describe the zero field conductivity data of this insulating film.

But the most convincing evidence for the fitting failure comes when trying to fit the above
parameters to the zero conductivity data, as shown in figure 6. Equations (11), (13) and (14)
were used. First, the temperature dependence is incorrect in that the conductivity data actually
follows an activated Mott VRH law and not simple temperature power laws; but much more
important, a negative offset value of −210(" cm)−1 was required to pass the solid theoretical
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line through the data in this figure. Negative conductivities are not physical. Thus, these two
metallic theories fail badly to describe the ‘insulating’ data, and it is unfortunate that such
consistency tests were neglected in earlier MC analyses.

The large values for the MR ratios at T = 1.77 K clearly suggest that film A2 is an
insulator. We now try fitting the MR ratio data at T = 1.77 K using the wave function
shrinkage theory. The line in figure 7 is a fit using equation (4) and the numerical values from
figure 1. Bc was the only free fitting parameter, since csat = 0 owing to the absence of any
negative MR. TMott was set to the value of 3.425 K, which was extracted from the zero field
resistance data. Note the deviations between theory and ratio data at fields higher than 6 T.
Overall, the fit is acceptable. Using the value Bc = 6.25 T at T = 1.77 K and equation (5),
the Bohr radius (localization length) was estimated to be a0 ≈ 230 Å.

7. Saturation behaviour of the magnetoresistance ratio

The discrepancies between the wave function shrinkage predictions and the ratio data become
much worse for temperatures below 1 K, as illustrated in figure 8. The behaviour of the ratio
data is anomalous and surprising with the ratios tending to saturate around 13 T and then
slightly decrease at higher fields. Both the theory and numerical calculations predict a slow
increase of the ratio data going as ln(r) ∝ B1/3. There has been reported a similar saturation
behaviour in QC AlPdRe melt-spun annealed ribbons by the French group [8]. Only one fitting
parameter, Bc, was used in figure 8: Bc(T = 0.093 K) = 0.725 T,Bc(T = 0.295 K) = 1.37 T
and Bc(T = 0.54 K) = 2.23 T.

Figure 7. Magnetoresistance (MR) ratio data at T = 1.77 K for the insulating crystalline AlPdRe
film A2. The solid line is a fit obtained by using the wave function shrinkage equation (4) along
with the numerical calculated values of the percolation parameter appearing figure 1. One free
fitting parameter was used: Bc = 6.25 T. Observe that there are no MR ratios smaller than 1 at
low fields, probably owing to the fact that this film is not sufficiently insulating with its small Mott
temperature of TMott = 3.425 K.

Moreover, the dependence ofBc did not scale as T 1/4 according to the theory but exhibited
a strong T 0.7 dependence. Thus, either the wave function shrinkage model needs to be modified
or perhaps it simply does not apply to these weakly insulating Mott VRH films.
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Figure 8. The magnetoresistance ratio data at low temperatures for the insulating quasicrystalline
AlPdRe film A2. The three lines are fits obtained by using equation (4) along with the numerical
calculated values of the percolation parameter appearing in figure 1. The anomalous saturation
behaviour and turnover of the r values for B > 12 T are not well understood.

The saturation behaviour of the ratio data suggests that either additional mechanisms
within the wave function shrinkage process become important or that a new conduction
process dominates over the wave functions shrinkage process at high fields. Raikh’s group
has suggested that the density of states (DOS), gB , in a 2D electron gas has a magnetic field
dependence and increases with application of a field [53]. Perhaps a similar behaviour occurs
in 3D films, but the 3D behaviour of gB is not currently known. In addition, Pichard’s group
suggests that the localization length or Bohr radius, aB , has a magnetic field dependence that
is influenced by spin-orbit scattering [54]. A prediction that the Bohr radius is field dependent
was also made by Lea’s group [24]. Medina et al suggest that the localization length increases
asB1/2, that is aB ≈ a0(1 +mB1/2) [55]; herem is a fitting parameter. Hence both parameters,
gB and aB , might influence the magnitude of the normalized percolation parameter ξ ∗

c in large
magnetic fields.

According to Schoepe [28], the normalized percolation parameter ξ ∗
c = ξc(B)/ξc(0) can

be expressed as a function of both the density of states (DOS) gB and of the localization length
aB in any field. Recall that the MR ratio r = R(B)/R(0) is given by r = exp{ξc(0)[ξ ∗

c − 1]}
with ξ ∗

c = ξc(B)/ξc(0) and ξc(0) = (T0/T )
v . Here T0 is the characteristic VRH temperature

and v = y is the VRH exponent extracted from the zero field resistance versus temperature
data. There is a relation between the hopping exponent v in the VRH resistance law and
the exponent of the power law dependence of the DOS near the Fermi energy EF, namely
DOS = g0|E − EF|n with v = y = (n + 1)/(n + 4) according to Hamilton [56]. Recall that
R(T ) = R0 exp(T0/T )

v in zero field. For example, in the Mott VRH case of a constant DOS,
then n = 0 and v = y = 1

4 ; for the case of the Coulomb gap where n = 2, then v = y = 1
2 .

We often observe a hopping exponent of v = y ≈ 0.62 in very strongly insulating ‘soft-gap’
films, which corresponds to a DOS exponent n ≈ 4 [14].

Following Schoepe’s procedure [28], we find

ξ ∗
c =ξc(B)/ξc(0) = (g0/gB)

1/(n+4)(EB/E0)
3/[2(n+4)]s3/(n+4)/{[F(s)]1/(n+4)61/(n+4)} (22)
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B∗ =B/Bc = [F(s)]1/(n+4)s(n+1)/(n+4)21/(n+4)/{(g0/gB)
1/(n+4)(E0/EB)

(n+5/2)/(n+4)3(n+3)/(n+4)}.
(23)

Here E0 and EB are the binding energies in zero and finite field defined as E0 = h̄2/(2ma2
0)

andEB = h̄2/(2ma2
B). Tabulated values of F(s) versus s are listed in table 1 [28–30]. Thus, if

one has theoretical expressions for the behaviour of the DOS gB and for the localization length
aB in large finite fields, one should be able to calculate the normalized percolation parameter
and hence the MR ratio r for any field.

Moreover, to inquire whether saturation is possible either in a Mott or ES VRH film, let
us consider two special cases. For the Mott case when n = 0 with v = 1

4 , then equations (22)
and (23) simplify to

ξ ∗
c (Mott) = ξc(B)/ξc(0) = (g0/gB)

1/4(a0/aB)
3/4s3/4/{[F(s)]1/461/4} (24)

B∗(Mott) = B/Bc = [F(s)]1/4s1/421/4/{(g0/gB)
1/4(aB/a0)

5/4271/4} (25)

with Bc = 6h̄/[ea2
0(TMott/T )

1/4] and ξc(0) = (TMott/T )
1/4.

For the ES case where n = 2 with v = 1
2 , then equations (22) and (23) yield

ξ ∗
c (ES) = ξc(B)/ξc(0) = (g0/gB)

1/6(a0/aB)
1/2s1/2/{[F(s)]1/661/6} (26)

B∗(ES) = B/Bc = [F(s)]1/6s1/221/6/{(g0/gB)
1/6(aB/a0)

3/235/6} (27)

with Bc = 6h̄/[ea2
0(TES/T )

1/2] and ξc(0) = (TES/T )
1/2.

Values for Bc and hence for a0 can be extracted from the MR ratio data in the small to
intermediate field regime where the saturation effect is negligible or small. In this case, one
sets gB = g0 and aB = a0 in all four equations (24)–(27).

For saturation of the MR ratio r to occur, the normalized percolation parameter ξ ∗
c =

ξc(B)/ξc(0) must become field independent at high fields. This might happen if the DOS
gB and/or the localization length aB both increase in magnitude with increasing field. But
inspection of equations (24) and (26) suggests that the influence of the density of states upon
ξ ∗

c will be small in both cases owing to the small power law exponents of 1
4 and 1

6 appearing
in equations (24) and (26). In contrast, the saturation in the Mott VRH case could result
in a rather strong dependence of ξ ∗

c upon the localization length, namely ξ ∗
c ∝ (a0/aB)

3/4

according to equation (24). In contrast, a weaker saturation effect would be predicted for the
ES case owing to the smaller power law exponent of 1

2 where ξ ∗
c ∝ (a0/aB)

1/2, and for a
very strongly insulating a:NixSi1−x film where y = v ≈ 0.62 and hence n ≈ 4, the predicted
saturation effect becomes even weaker since ξ ∗

c ∝ (a0/aB)
3/8; experimentally, a very small

tendency towards saturation in the MR data was observed in fields up to 12 T for this ‘soft-gap’
film [14].

In order to compare MR data to theory, one must generate a table of ξ ∗
c values versus the

normalized fieldB∗ values. This is a straightforward procedure at small and intermediate fields
using F(s) versus s values listed in table 1, when setting gB = g0 and aB = a0, thus ignoring
their field dependences. This approximation was made for the numerical values appearing in
figure 1.

However, at high fields where the localization length aB might be much larger than the zero
field value a0, the calculations are more complicated. Note that the normalized field parameter
B∗ = B/Bc appears both on the left side of equation (25) as well as in the denominator on the
right side through aB . Thus, a theoretical expression for aB is badly needed in order to solve
for B∗ in a self-consistent way for any given value of s and F(s). Once a value for B∗ has
been determined for a particular value of s and hence F(s), then a unique value for ξ ∗

c can be
found using these same parameters along with the magnitude of aB(B∗).

As a fitting example, we generate r ratio values using equations (24) and (25) where
aB = a0[1 + m(B∗)2]. Here B∗ = B/Bc and gB = g0. The three fitting parameters
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Figure 9. MR ratio data taken at T = 0.093 K compared to the predictions of Schoepe’s
expressions, equations (24) and (25). The upper solid curve neglects the field dependence of
the localization length while the lower dashed curve includes a quadratic field dependence. Three
fitting parameters were used. The density of states (DOS), the fourth fitting parameter, was assumed
to be field independent and thus gB/g0 = 1.

Table 1. Tabulated values for the Ioselevich integral F(s) versus s [29].

F(s) s F (s) s F (s) s

0 0 15.24 6.000 380.8 27.81
0.001 329 0.2000 18.21 6.500 482.7 31.27
0.010 53 0.4000 21.44 7.000 612.4 35.18
0.020 42 0.5000 24.93 7.500 777.5 39.60
0.034 98 0.6000 28.68 8.000 987.8 44.61
0.081 21 0.8000 32.68 8.500 1256 50.27
0.1547 1.000 36.94 9.000 1598 56.67
0.4841 1.500 41.46 9.500 2035 63.92
1.054 2.000 46.23 10.00 2593 72.13
1.884 2.500 55.92 10.94 3306 81.42
2.984 3.000 70.54 12.22 4218 91.94
4.355 3.500 89.00 13.67 5384 103.8
5.997 4.000 117.7 15.65 6876 117.4
7.908 4.500 155.8 17.93 8765 132.6

10.09 5.000 206.3 20.57 11 230 149.9
12.53 5.500 300.7 24.75 14 360 169.5

are m = 0.03, Bc = 2 T and an assumed quadratic field dependence of aB , along with
TMott = 3.425 K and v = 0.25. We plot the MR ratio data taken at T = 0.093 K in
figure 9 along with two fitting curves. The upper solid curve has aB = a0 (m = 0) where the
field dependence of aB has been neglected. The lower dashed curve includes the quadratic
field dependence of aB ; saturation and a turnover to lower r values are observed. No field
dependence was assumed for the DOS. The crucial point now is the physical justification of
this strong field dependence of aB and and a prediction of a possible field dependence for
the DOS, gB . Weaker field dependences for aB yielded unacceptable fits. For example the



3184 R Rosenbaum et al

suggested B1/2 dependence gave ratio values much too high at high fields and ratio values
much too low at small fields [55].

In conclusion, if we assume that the localization length as well as the 3D DOS increase in
large magnetic fields, then the above arguments suggest possible saturation of the resistance
in Mott VRH films and a much smaller tendency for saturation effects in the more resistive ES
and ‘soft-gap’ VRH films.
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